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An approximate solution to the problem is based on a variational formulat ion and conformal 
mapping of the given configuration on a rectangle. The solution provides also the upper and the 
lower bound of the estimate of the torque. The approach is applicable to a broad class of geo-
metrical configurations and rheological models of purely viscous non-Newtonian behaviour. 
As an example, an approximate solution is shown for a Bingham material in a system of con-
centric spheres. 

Solutions to problems of hydrodynamics of non-Newtonian flows in the vicinity of 
rotating spindles of finite dimensions has found its practical use mainly for evaluation 
of data f rom rotational viscosimeters1 - 4 . Certain applications may be also found in 
simulation of mixing by rotating impel lers 5 - 7 . The most important result in both 
cases is the torque characteristics, i.e. the dependence of the torque, M, on a character-
istic dimension of the spindle and the angular velocity, Q, (preserving geometrical 
similarity of the configuration of the spindle and the vessel containing the rotating 
spindle) for given mechanical properties of the liquid. 

Recently published experimental studies8 '9 indicate that even with a highly elastic 
behaviour of the tested liquids the torque characteristics in region of the creeping flow 
depends mostly on their viscosity function. Conversely one can assume that for 
a theoretical estimate of the torque under the creeping flow conditions the equations 
of motion for purely viscous liquids may be used with 

= l(D) A j • (1) 

For a Newtonian creeping flow (rj(D) = constant) around rotating spindles in an 
infinite liquid or a liquid confined in an axially symmetric fixed vessel of finite di-
mensions there are numerous exact explicit solutions available in the l i terature1 0 '1 1 . 
These solutions are mostly constructed by methods based on the theory of analytical 
functions and conformal mapping. 

It is interesting to note that simple analytical solutions available for non-Newtonian 
creeping flows of power-law liquids in systems with spherical symmetry have been 
published only recent ly 1 - 3 . For other configurations than concentric spherical 
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surfaces or for other non-linear models of purely viscous behaviour than the power-
-law model the problem becomes that of solving a non-linear elliptic equation with 
mixed boundary conditions. This class of problems to our knowledge has not been 
solved to date excepting the creeping flow of a Bingham material between two 
concentric spherical surfaces of close radii1 2 . 

In view of the prospects of the portable rotational rheometers stemming mainly 
f rom the low costs of the instruments of the type of the Brookfield viscometei it seems 
useful to work out methods as exact as possible of transforming the torque character-
istics into the viscometric data. In case that for a given configuration the general 
functional transforming the torque characteristic into the viscosity function (a known 
functional such as e.g. the one for coaxial cylinders) cannot be derived one has to 
resort to model courses of the torque characteristics. These are determined by solving 
the equation of motion for a chosen rheological model, usually the power-law model. 
With the present state of art, when the solutions even for the power-law model have 
been known only for configurations with spherical symmet ry 1 - 3 , it seems natural to 
apply approximate methods. 

The approximate solution constructed in this work starts from an intuitive concept 
that the component of the gradient of angular velocity perpendicular to the confining 
surface is much larger than the parallel one not only on surface of the spindle and the 
vessel but rather in the whole volume of the rotating liquid. A conformal mapping 
of the spindle and the vessel on two parallel sides of a rectangle enables this concept 
to be formulated in general. On neglecting completely the component of the gradient 
parallel to the surface of the spindle and the vessel the original problem is simplified 
to a boundary value problem in a single independent variable. This approximate 
solution, which shall be referred to as the one-gradient one, offers a rather narrow 
upper and lower bounds for the estimates of the torque and represents thus a con-
venient starting point for formulating effective perturbation methods for searching 
higher-order approximations. 

Natural Coordinates 

Let us formulate the problem first in polar cylindrical coordinates (z, r, </>) oriented 
so as to make r = 0 the axis of rotational symmetry of the kinematic boundary 
conditions and thus the axis of rotational symmetry of the velocity field. The formu-
lation will be confined to the creeping rotational steady flow of the liquids exhibiting 
in viscometric flows zero differences of normal stresses. With no sources or sinks and 
the boundary surfaces satisfying 

vr = 0, vz = 0, (2) 

the condition (2) is satisfied in the whole studied region and the velocity field can be 
represented by a single scalar function — the field of angular velocity around the axis 
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of symmetry, r = 0, as 
vjr = co(r, z) . (3) 

In view of the applications of practical importance we shall confine ourselves to 
the cases when the spindle and the vessel, and hence the field of angular velocity 
display plane symmetry. Let the plane of symmetry be at z = 0. The kinematic 
boundary conditions may then be formulated as 

co = Q for (r, z) e r R , co = 0 for (r, z ) e f w , (4a, b) 

— = 0 for (r, z) e r M , — = 0 for (r, z)e TA , (4c, d) 
dz dr 

where r ; are the contours in the first quandrant of the r, z plane, see Fig. 1. 
In accord with the Riemann's theorem, between every two open simply connected 

regions there is a variety of conformal mappings represented by an analytical function 
with three adjustable parameters enabling to choose for instance three points in each 
region to be matched by transformation13. On admitting another degree of freedom 
by leaving one parameter unspecified characterizing the shape of the region (in our 
case for example the length of the rectangle on which the examined flow region is 
being mapped), there is just one conformal mapping between the two regions enabling 
four points chosen in advance (appearing in the same order on the boundaries of 
the region) to be matched. 

Conformal mapping (r, z) -> (£, \j/), transforming an open region j / , confined by 
a continuous closed curve jTr u T a u T w u Tm in the coordinates (r, z), to a rect-
angle with the sides r R , TA, Tw , r M in the coordinates (<!;, iJ/), exists in accord with the 
above theorem and defines natural coordinates of the problem (£, iJ/), Fig. 1. If the 
confining curves r { are smooth in (r, z) and intersect at right angles, the corresponding 
conformal mapping is defined by a holomorphous analytical function on the closed 
region . 

The kinematic boundary conditions may be written in the natural coordinates of 
the problem according to Eqs (4) as 

co = Q for rR, £ = , (Am < "A < <Aa (5a) 

co = 0 for T w , £ = , < if/ < , (5b) 

^ = 0 for { R < ^ W , (5C) 
Oil/ 

^ = 0 for rA, <A = >Aa, < £ < £w . (5d) 
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Rheology and Model of the Flow 

The rheological model of the Generalized Newtonian Liquid (GNL), Eq. (l) , contains 
a single scalar material function. Apart f rom the basic form RJ(D) this function may be 
written in a number of equivalent forms to be used subsequently without special 
emphasis: In addition to the common forms r = X(D), or the inverse form D = D(t) 
we have Bird's energy funct ion 1 4 

U(D) = J V ) d D 

and the local flow index 

n' = n'(D) = 
d In t(D) 

d i n D 

(6a) 

(6b) 

For a complete description of the course of the viscosity function it is of course 
necessary to furnish the data regarding the integration constant for Eq. (6b). 

From general variational formulations of the equations of motion for the steady 
flow of the G N L (ref .1 4 '1 5) one can easily derive the functional for the case under 
consideration 

J[co] = | | U(D) . r . d r . d z , (7) 

to be minimized by the solution of the problem with the boundary conditions (4). 
As the transformation into the natural coordinates of the problem (£, ij/) is a con-

F IG. 1 

Geometrical Configuration 
r A axis of rotation, r H plane of symmetry, r R surface of spindle, surface of wall. 
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formal one, both Lame's coefficients are identical and the non-zero components of 
the rate of deformation, can be expressed in the form 

DK = -0 — , -g —, (8a,b) 
o £ d\Jj 

where g is the normalized Lame's coefficient 

1/2 d In (r)\2 fd In (r) 
# M 

The functional in Eq. (7) may be written in the natural coordinates as a two-
-dimensional integral over the rectangle st = (£R, <i;w) x (iJ/M, 

J[co] = j j U(D) r3 . g2 . . d\J/ , (10) 

where the deformation rate is given by 

D = [Djc + O l J 1 ' 2 • ill) 

The first and the second variation of the functional (10) may be written as 

<5J = i f n r3. P. d£ . dxl/ = i f e A[co] . d£ . dip (12a, b) 

J J Jar JJs/ 

s2J = j j rj r3 . (ri . P2js + N2/S) . d£ . diJ/, (13) 
where 

+) = dco (14) 

is the variation of the angular velocity and A is an elliptic differential operator of the 
problem: 

P, N, S are auxiliar quantities introduced by the relations 

\ dco de dco ds x P(co, s) = + , (16a) 
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, . dco 8e dco 8b , . 
A (co, £ = , (16b) 

dip 8E, 8£ dip V 7 

< i f c > 

A sufficient condition for the functional (10) to be stationary, 8J = 0, is clearly 

A[o>] = 0 , (17) 

which is the equation of motion of a creeping rotational flow in the current form. 
From the structure of the second variation, Eq. (13), it is apparent that a sufficient 
condition for the stationary point (solution) of the functional (10) to be a global 
minimum is n' ^ 0. This is satisfied in all cases of practical interest. 

With the boundary conditions (5) the acceptable variations s are constrained by 
the following homogeneous conditions 

£ = ' 0 f o r c = , £ = , (18a,b) 

and 
8F 

— = 0 f o r = <A = <Aa. (18c,d) 
8x1/ 

In the following the symbol & (eventually subscripted) will be used to designate 
a class of sufficiently smooth functions satisfying the homogeneous boundary condi-
tions (18). 

One-Gradient Solution 

The character of the boundary conditions suggests that the dependence of co on 
the longitudinal coordinate tjj is far weaker than the dependence on the radial co-
ordinate 

8co 8co 

# dt 

If the inequality (19) is satisfied, the argument of the scalar function (6a) may be 
replaced approximately by the value of the radial component of the rate of defor-
mation: 

U(D) * U(D^ . (20) 

Neglecting the longitudinal component D ^ thus leads to the formulation of a "one-
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-gradient" functional as 

J i M = I T U(D^r3g2.6Z.ty (21) 
J J si 

which for an arbitrary a> approximates the principal functional J from below 

Jx[co] ^ J[co] . (22) 

The one-gradient approximation co1 of the exact solution coe we define as a function 
minimizing for the boundary conditions (5) the functional J ^ The first and the second 
variation of the functional (21) can be written in the form 

= IT « ̂  [>(*>*) r3g] . dc . All, (23) 

= j j '<Dh) . n(D^) . r3 . (|Y . i ( . d* . (24) 

Provided that such solution exists, the corresponding stationary point of the 
functional (21) is according to (24) its minimum. As follows from Eq. (23), co1^, \j/) is 
a solution of an ordinary differential equation with the boundary conditions (5a, b) 
while the longitudinal coordinate is a parameter of the problem. The solution may 
be written explicitly as 

col=j g . D(C . r~3 . g-1) . d£ , (25) 

where C = C(i//) is for each iJ/ a root of the equation 

rtw 
0 = g . D(C . r - 3 . g~l) . d£ . (26) 

As a proof of existence of the solution we need to prove that co1, defined by Eqs (25) 
and (26), satisfies also the boundary conditions (5c, d). For this purpose one can make 
use of the orthogonality of the functions r(£, i//), z(£, ip) ensured by the conformal 
mapping. 

For brevity we shall present only the principal idea of the proof: The orthogonality 
of the functions z(£, \]/), r(£, \]/) ensures that in the neighbourhood of some contour 
iJ/0 — constant, where r = constant or z = constant, the following asymptotic 
relations hold 
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K & «Ao + <5) « r 0 ( Q . ( 1 + 0 ( < 5 2 ) ) , ( 2 7 a ) 

<Ao + &) » • ( 1 + 0 ( < 5 2 ) ) , ( 2 7 6 ) 

w h e r e 

d = x// - \ j / 0 ^ 1 . ( 2 7 c ) 

The viscosity function D(T) in a sufficiently close neighbourhood of the line may be 
expressed using logarithmic derivatives as the following expansion 

D({, >Ao + 3) » D ( C 0 . r " 3 . 0 " 1 ) . [ 1 + ( l / n ' ) . . 5 + £ ( £ ) <52) . ( 2 8 ) 

Substituting the last result into Eq. (26), which must hold asymptotically for all 
3 -> 0 and comparing the quantities of equal order in 3 one arrives at the relation 
C(if/o + 3) = C0 . (1 + 0 (c52)). Thus also 

rtw 
co>Ao + 3) = J g0. D(C0 . r 0 - 3 . g~x) . . ( l + 0 (<52)) . ( 2 9 ) 

This is essentially the sought result because clearly for ij/ -*• \]/0 we have d c o 1 / ^ = 0(<5) 
and the boundary conditions (5c, d) are met. The proof for ij/0 = i j jK , i.e. for r -> 0, 
g -> oo, D -*• 0 calls for certain modification in that r0 , g0 are expressed in the form 
/ ( £ ) . <5k and with the assumption of the existence of the limit n' for D -» 0, D(T) is 
expressed in the corresponding power form. 

As the exact solution coe represents the minimum of the functional J, estimation of 
the upper bound for the approximate methods poses no problem. The significance of 
the one-gradient approximation rests in that it furnishes also the lower bound for J. 
Clearly, for each approximate solution co we have that Ji[co] ^ J[co]. However, 
Jj[a>] ^ J[coe] is not generally true. Since we have J^cOg] S and the one-
gradient solution represents the minimum of the functional Ji[ft>], i.e. J i f ® 1 ] ^ 
fS Ji[a>] for each co, the following inequalities are valid generally 

J! [ft)1] ^ J[ft)e] g J | V ] . (30) 

The Determination of Dissipation 

The data on the torque M and the dissipation of mechanical energy into heat, Q, 
may be regarded as equivalent owing to the relation M = Q]Q. In the following we 
shall therefore confine ourselves to the determination of the dissipation the approxim-
ate estimates of which for a given approximation of the angular velocity may be 
again defined as the corresponding functional. For instance 
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Ql(4tc) = E[a>] = rj r 3 . S . . dif, . (31) 
J si 

The first variation may be written in the form 

<5E = <5SE + <5„E , (32) 
where 

5SE = 2 5J (33 a) 

<3„E = - | | (1 - n'). rj r 3 . P . . d ^ . (33b) 

The term <5SE expresses the effect of changing velocity gradient for a fixed viscosity 
field on the total change E. 3nE represents in contrast the changes of E brought about 
by the changes of the viscosity field. From the expression for the second variation E 
(not presented here) it follows that under the asumption 0 ^ n' ^ 1 and for suf-
ficiently smooth course of the viscosity function (which are the only cases of practical 
interest) <52E > 0. Consequently, E[co] exhibits a sharp global minimum. Generally, 
this minimum occurs at a different point co = coE than the point coe of the minimum of 
the principal functional of the problem, J[co]. For an approximate determination of 
E one has therefore to search for a sequence of estimates aj; ensuring that the corres-
ponding sequence of Jj = J[co;] is non-increasing and calculate the corresponding 
E; = E[cOj]. The criterion of convergence is the behaviour of the sequence Jj. 

However, there is a strong relation between the quantities E and J enabling one of 
the direct variational methods to be used for construction of the minimizing sequence 
Jj and to obtain corresponding estimates of E; without additional calculations. 

Let us introduce the following functional of three independent arguments f1,.f2> 

where 

Dw = g 
[ ( I ) ' * 0 7 " • 

The functional has the properties of a scalar product of the functions f u f 2 on 
a linear space which is a union of {e} and {co} and permits one to introduce the norm 

i / i !„ = ( / . / ) : / 2 - ( a o 
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The introduced scalar product (34) and the norm (36) containing the parametric 
function w have in view of the variational formulation of the approximate solution 
of the problem the following useful formal properties: 

1) The exact solution coe and an arbitrary admisible s satisfy the equation 

(©.,8)*. = 0 , (37) 

which is identical to Eq. (12a). 2) The exact value of Ee = E[coe] is given by the ex-
pression 

Ee = K l l i . . (38) 

The last equation is again identical to Eq. (31) for co = coe. 3) Ritz' method: Let us 
have a fixed first estimate of co0 and a set of trial functions £j. The approximate solution 
in the form 

<»a = CO0 + Z a iE i i 3 9 ) 
j 

represents a local minimum on the set £j if the coefficients a} are solutions of the fol-
lowing nonlinear set of equations ( j = 1, . . .) as 

0 = (coa, fij)^ = (co0, £j) Wa + £ a{(si? £j)Wa. (40) 
i 

4) The approximate estimate of E corresponding to the approximation (39) may be 
expressed f rom Eq. (31) and on the basis of general properties of scalar products in 
the form 

e . - K I 2 . - M i . - I p A l i . • ( " ) 

As it is common for nonlinear problems the set of trial functions and the convergence 
of the method in the sense of minimizing J[co] must be studied for each particular 
case separately. However, as a rule the one-gradient approximation co1 ensures a good 
first estimate permitting a minimizing sequence to be constructed by making use of 
the following quasi-linearization based on replacing [[ norms by the [| norms. 

Let us start f rom a countable base E{ and a first estimate COQ = co1. The (k + l)-st 
estimate is defined as 

k 

u>k + i = cok + X fljfij, (42) 
j= i 

where the coefficients a* are solutions of the following linear system: 

(«k + i» £j)«k = 0 , j = l,...,k. (43) 
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Corresponding sequence Jk is given by the relations 

k 

Jk+i = 4 + <5Jk = Jk + £ 4 cj)®k ' ( 4 4 a ) 
j=l 

Jk+1 - J k = - I l i a ^ ^ O , (44b) 
j=i 

and as such it is non-increasing. The sequence Ek is calculated from intermediate 
results 

E k +1 * K + i | | ; k = M L - II i • (45) 
j=l 

The described quasi-linearization clearly permits construction of a convergent 
minimizing sequence cok provided that the base £j is complete. With regard to the 
relation 

k + e | k = I k l k O + o ( \ \ 4 2 J ) W 

which is met for each e (see Eq. (33a, b)) one may expect the sequence Ek to converge 
sufficiently rapidly toward Ee. In order to speed up convergence it is useful to utilize 
the first, i.e. the one-gradient approximation to arrange the base £j by the following 
rule 

(co1, > (co1, = > I < J . ( 4 7 ) 

For the special case n' = constant (power-law) we have precisely 

E = (1 + n ' ) J ( 4 8 ) 

and the problem may be formulated directly as one of a minimum dissipation. 
However, even in cases when Eq. (48) does not hold accurately the one-gradient 
estimate Ex of the dissipation may serve at least qualitatively as the lower estimate. 
The one-gradient (lower) estimate of the dissipation for the one-gradient solution 
E^tw1] may be expressed as a line integral 

E , [ y ] = j j r j ( D ^ ) . D 2 h . r 3 . g 2 . d £ d<A = ( 4 9 a ) 

( 4 9 b ) 

where C ( i { / ) is an integration parameter from Eq. ( 2 6 ) . 

r ^ A 

( 
J <P\i 

C W • 
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An Example of the One-Gradient Approximation 

There exist cases when the one-gradient approximation is identical to the exact 
solution. For this it suffices that the one-gradient solution satisfy (dco/dij/) = 0 
over the whole s / . An example is the flow of a Newtonian liquid in a system of 
confocal spheroids and the flow of a power-law liquid in a system of concentric 
spheres. On the other hand, as an example of the situation when the one-gradient 
solution is not exact, one can put forth a sphere rotating in an infinite viscoplastic 
liquid. The latter problem has been solved by approximate methods earlier12. 
Neverthless, an order of magnitude estimate of the longitudinal derivatives, dco/dij/, 
and corresponding estimate of dissipation in this case will reveal that the one-gradient 
solution, in this case not exact, still offers rather accurate estimates of the dissipation 
and the torque. 

The Shvedov-Bingham model of the viscosity function may be written in the form 

T ^ Tf 

D[ t] = L0 . 
(50) 

M = T0 • 

For a system of concentric spheres the conformal mapping onto a rectangle in i]/) 
may be constructed e.g. as 

r = R . exp (£). cos (\j/), (51°) 

z = R . exp (£). sin (\ji) , (51b) 

g = cos'1 (ij/) , (51c) 

which identifies £R = 0 with the surface of a sphere of radius R and it is assumed that 
= oo. Substituting (50), (51) into the general Eqs (25), (26) and (49b) one arrives 

at the relations 

w = CO 1 T 
r_ exp (3£0 - 3g) - 1 - 3£0 + 

Q 

A > A,(B) = 
M , 

47lR% J o 

3B cos (iI/) 

n/2 
exp (3f 0) • cos2 (iI/). dif/, 

(52) 

(53) 

where we introduced instead of C(i]/) an integration parameter ^0(ij/), C(\j/) = R' 
. t 0 . cos2 (iJ/), exp (3£0(<A)) which for a given xp is the solution of 

3B cos (ij/) = exp(3^0) - 3 ^ - 1 
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and B is a dimensionless macroscopic parameter of the problem given by 

B = Q . r0lnB . (55) 

The parameter has a definite physical meaning: £ — £0(<A) is the equation of 
a rotational surface confining the region of the flow. For £ ^ £0 and a given \]/ = 
constant we have D = 0 (Fig. 2). In region 0 ^ £ rg the field of radial com-
ponents of the shear stress in the one-gradient approximation is given by 

xt4, = t 0 . exp (3£0 - 3£) . (56j 

In order that we may construct the upper estimate A(B) one has to know the derivative 

sin (ift)— f l - e x p ( - 3 0 A 
# B . cos2 V 1 ~ exp ( - 3 f 0 ) 

From the last equation it is apparent that the longitudinal derivative vanishes not 
only on the bounding surfaces and the surfaces of symmetry but also on the boundaries 
of the flow region, £ = £0. 

Local dissipation may be expressed in the form rj . D2. Its one-gradient estimate 
will be expressed as Y\x . D\. Let us introduce the parameter q as a ratio of the longi-
tudinal and radial derivative 

dw 1 dw 
q = 

di// 1 
The upper bound for the estimate of local intensity of dissipation based on the one-
-gradient solution may then be expressed in the form rji . D2 . (1 + q2). In the last 
expression we have made use of the fact that r\(D) is a non-increasing function of D. 
Denoting a suitable mean value of q for \J/ = constant by g2(<A) the upper bound for 
the estimate may be expressed as 

A ^ A2(B) = A^B) + AA(B) (59a) 

where 
RN/2 

AA(B) = exp (3£0) . cos2 0 ) . q\ . dijs . (59b) 

We shall show that for B :g 1 and B ^ 1 Eqs (53) and (59) respectively enable us to 
construct asymptotic expansions for the lower and upper estimates of negligible 
difference. 
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T h e a s y m p t o t i c e x p a n s i o n s f r o m E q . (54) m a y b e w r i t t e n a s 

e x p ( 3 £ 0 ) ~ 1 + ( 2b) 1 ' 2 + i (2b) + ^ (2b) 3 / 2 + 0 (b 2 ) f o r B < 1 , (60a) 

e x p ( 3 £ 0 ) « b + In (b) + 1 + + 0 (b'1) f o r B p 1, (60b) 
b 

w h e r e b = 3B . c o s 

T h e l o w e r b o u n d s a c c o r d i n g t o E q . (53) m a y b e e x p r e s s e d in t h e f o r m s 

fn/2 
AX(B) « ( c o s 2 (ij/) + 6B . c o s 5 / 2 (iJ/) + IB c o s 3 (ij/) + 

+ (6B)3/2 c o s 7 / 2 ( 0 ) diA + 0 ( S 2 ) = 0-785 + V162Bl/i + 1 -333B + 0 - 6 3 7 B 3 ' 2 

f o r p r o B > 1 (61a) 

A ^ B ) « r ( 3 B c o s 3 + (In ( 3 £ ) + 1) . c o s 2 + . c o s (,/,) + 
J o 3 5 

+ In ( cos (ij/)). c o s 2 (ij/)) # + 0 ( B - 1 ) = 2 5 + 0-785 .1 n ( 3 B ) - 0-152 + l ^ S S 
3 B 

f o r J5 1 

s h o w n a l s o g r a p h i c a l l y i n F ig . 3. 

1 

z/R 

0 

0 1 r/R 2 

Fig. 2 
Contours of Constant Angular Velocity for 
Rotation of a Sphere in a Viscoplastic 
Material, B = 1 

1 w = 1 (surface of sphere), 2 w = 0 1 , 
3 w = 0 (boundary of flow region). 

10' 

A 

10° 

Fig. 3 
Momentum Characteristic for Rotation of 
a Sphere in a Viscoplastic Material 

1 Ideal plastic, 2 Newtonian liquid, 3 one-
-gradient estimate, 4 asymptote for B 1, 
Eq. (61a), 5 asymptote for B > 1, Eq. {61b). 
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The estimate q2 is constructed as a ratio of the maximum value of the longitudinal 
and radial derivative. The maximum value of the longitudinal derivative is obtained 
in the familiar way from Eq. (57). The maximum value of the radial derivative occurs 
clearly on the wall of the sphere. Analysis of the resultant relation yields the following 
asymptotic estimates 

The second equation was written on the assumption that cos (iJ/) « 1; it is thus valid 
only in the asymptotic region where the major increment of the resulting value of the 
integral (53) or (59b) occurs. Substituting these relations into Eq. (59b) there results 

In regions of applicability of the individual asymptotic expansions, i.e. roughly for 
B ^ 0-5 and B ^ 1-5, Eqs (63a, b) represent at most 0-5% differences between the 
upper and the lower bound. In practice it is usually more than a sufficient accuracy. 

The problem of a rotating sphere in a Bingham plastic has been solved on the as-
sumption of an infinite medium. It is apparent though that a sufficient condition is 
that the walls of the vessel be outside the region of the flow, i.e. that they satisfy the 
relation ^ ^o('A)- Having satisfied this assumption the results presented here for 
B 1 are comparable with those of Malinin12 reporting an expression analogous to 
Eq. (61 a). The difference is only in the numerical coefficient of B3/2 probably due to 
inadequately constructed approximation. From the presented estimate of the error 
in Eqs. (63a, b) it is clear that the assumption imposed by Malinin, which in our 
notation may be written as £0 1, is redundant. It suffices that £w ^ for all i]/. 
If this is not the case the presented approach can be modified by replacing Eq. (54) 
for £0 by 

(62a) 

(63a) 

3B . cos (iA) = exp (3£0) . (1 - exp ( - 3 ^ ) ) - 3{, a J (64a) 

where 

f a = min ( f 0 , f w ) . (64b) 
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Equally as in the previous case = here too 1 and 1 3-re unnecessary 
in contrast to Malinin's assumption12. However, rotational viscometers with the close 
spherical vessel cannot be regarded as really suitable for testing viscoplastic mate-
rials and for this reason this case shall not be dealt with in detail. 

CONCLUSION 

The presented paper was intended to be as an introduction. It formulates mathematical 
prerequisites already used for the study12 of specific problems of creeping non-
-Newtonian flow with the aim to work out adequate routine of processing data from 
portable rotational viscometer. Nevertheless, it is felt that the possibility of formu-
lating approximate analytical solutions for a nonlinear two-dimensional problem 
for a rather general class of geometrical configuration and rheological models deserves 
an independent communication. 

The essence of this work has been the proof that with and orthogonal or conformal 
mapping which is regular on TA, and r M the one-gradient approximation satisfies all 
boundary conditions of the problem and offers both the upper and the lower bounds 
for the functional whose minimum is a point of the exact solution to the problem. 
For the power-law model the one-gradient solution provides the upper and the lower 
bound also for the value of the dissipation functional which can be viewed as the 
principal result. It may be expected that these estimates will be applicable also for 
other sufficiently smooth viscosity functions. 

The paragraph dealing with the construction of the minimizing sequence has 
a rather illustrative character. As useful though appears the relation between <5J and 
8E applicable generally to othe rdirect methods of solution than the Ritz' method. 
The quasi-linearization (43) is, of course, based on the assumption of adequate repre-
sentation of succesive differences by variations and its prerequisite is a good initial 
estimate. Whether the one-gradient approximation provides a sufficiently good 
initial guess even in nontrivial cases, when for instance at a certain point on s/ g -> oo, 
will be shown by numerical experiments. 

The example presented in the text suggests that in many cases the one-gradient 
estimate E^ct^] is so good that it does not call for any further refinement. Also the 
study of rotational flow of a power-law liquid in a system of confocal spheroids16 

the one-gradient approximation turned out to give good entry estimates of the velocity 
field and the intensity of dissipation16. 

Thanks are due to Dr K. Wichterle for encouragement to undertake this work and to Dr P. Mitsch-
ka for critical discussions. 
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LIST OF SYMBOLS 

s / studied region of flow 
A dimensionless torque, Eq. (53) 
B dimensionless angular velocity, Eq. (55) 
C(y/) parameter of the one-gradient approximation, Eqs (25), (26) 
D shear rate, Eq. (11) 
Z>jj components of rate of deformation tensor, Eqs (8a,b) 
E dissipation functional, Eq. (31) 
g normalized Lame's coefficient, Eq. (9) 
J principal functional of the problem, Eqs (7), (10) 
J j principal functional of the one-gradient approximation, Eq. (21) 
M torque 
ri local flow index, Eq. (6b) 
N, P auxiliary quantities, Eqs (16a,b). 
Q dissipation 
r polar radius 
S auxiliary quantity, Eq. (16c) 
U auxiliary energy function, Eq. (6a) 
t'j physical components of velocity 
w dimensionless angular velocity, Eq. (52) 
z axial polar coordinate 
r boundaries of the studied flow region 
s variation of angular velocity; function on satisfying conditions (18) 
{e} linear space of all continuously differentiable functions with the limited norm ||e|| 
rj viscosity function, Eq. (1) 

plastic viscosity 
€ natural coordinate 

boundary of flow region 
T shear stress 
Tjj components of tensor of deformation stress 
T0 yield stress 
<t> angular coordinate 
y/ natural longitudinal coordinate 
co angular velocity; function on A satisfying conditions (5) 
{&>} linear space of all a co with limited norm ||f»||coe 

co1 one-gradient approximation, Eq. (25) 
£2 angular velocity of spindle 

Subscript 

A symmetry axis 
e exact solution 
M plane of symmetry 
R surface of rotating spindle 
W surface of wall 
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